基于改進DBO算法的儲能容量配置優化研究
王崎1 ,楊雯2
(1 上海電力大學 經濟與管理學院,上海 201306; 2 國網上海市電力公司長興供電公司,上海 201913)
摘 要 :風光互補微電網能夠提升可再生能源利用率,保障配電網運行穩定,然而其容量配置優化通常涉及高維非線性約束,求解難度較大。構建了以全生命周期成本最優為目標的風光混合儲能微電網容量配置模型,并引入改進蜣螂優化算法 (DBO) 進行求解,通過慣性權重因子和動態邊界收縮機制的協同作用,提升了在復雜約束下的搜索精度與收斂性能。仿真結果表明,所提方法能夠在典型日場景下有效降低系統經濟成本,并在不同季節性工況下保持較高的供電可靠性與運行穩定性。基于改進DBO的配 置方案為風光儲能微電網的工程應用提供了可行的技術路徑,未來可進一步拓展至更大規模多能互補系 統并結合實際運行需求完善動態約束設計。
關鍵詞 : 改進蜣螂優化算法 ;風光混合儲能 ;容量配置 ;微電網 ;全生命周期成本
中圖分類號 :TM715 ;TM734 文獻標識碼 :A 文章編號 :1007-3175(2025)12-0016-06
Research on Optimization of Energy Storage Capacity Configuration Based on Improved DBO Algorithm
WANG Qi1 , YANG Wen2
(1 School of Economics and Management, Shanghai University of Electric Power, Shanghai 201306, China;
2 State Grid Shanghai Electric Power Co., Ltd. Changxing Power Supply Company, Shanghai 201913, China)
Abstract: Wind-solar hybrid microgrids can enhance renewable energy utilization rates and ensure stable operation of distribution grids. However, optimizing their capacity configuration typically involves high-dimensional nonlinear constraints, making the solution process quite challenging. A capacity configuration model for wind-solar hybrid energy storage microgrids targeting the optimization of the whole-life cycle cost is constructed, and an improved dung beetle optimization (DBO) algorithm is introduced for solving. Through the synergistic effect of the inertia weight factor and the dynamic boundary contraction mechanism, the search accuracy and convergence performance under complex constraints are improved. Simulation results show that the proposed method can effectively reduce the system economic cost under typical daily scenarios and maintain high power supply reliability and operational stability under different seasonal operating conditions. The configuration scheme based on the improved DBO provides a feasible technical path for the engineering application of wind-solar energy storage microgrids. In the future, it can be further extended to larger-scale multi-energy complementary systems and the dynamic constraint design can be improved in combination with actual operational requirements.
Key words: improved dung beetle optimization algorithm; wind-solar hybrid energy storage; capacity configuration; microgrid; whole-life cycle cost
參考文獻
[1] 林旗力,陳珍,王曉虎,等 . 基于“電-氫-電”過 程的規模化氫儲能經濟性分析 [J]. 儲能科學與技術, 2024,13(6) :2068-2077.
[2] 李偉,王師鵬,王英旭 . 考慮源荷匹配的含風光能源微 電網儲能容量配置 [J]. 電工技術,2025(10) :94-97.
[3] 王亞平,王雨田,李永毅,等 . 基于MOPSO算法的 風光氫燃氣輪機互補系統優化研究 [J]. 熱力發電, 2025,54(1) :35-45.
[4] 智筠貽,凌浩恕,吳昊,等 . 風光儲多能互補能源系統容量配置優化 [J]. 儲能科學與技術,2024, 13(11) :3874-3888.
[5] 孔令國,范乃文,石振宇,等 . 風-儲-氫-燃機 協同平抑功率波動運行配置策略 [J]. 高電壓技術, 2025,51(5) :2125-2136.
[6] 段晨,何鑫,何其新,等 . 基于改進蜣螂優化算法的微電網經濟調度模型 [J]. 電工材料,2025(3) :63-67.
[7] 陳慶明,廖鴻飛,孫穎楷,等 . 改進的蜣螂優化算法及光伏發電功率預測應用 [J]. 太陽能學報,2025, 46(9) :445-454.
[8] 何思敏,李偉,劉立,等 . 基于隨機規劃的風光柴儲容量配比優化方法 [J] . 水電與新能源,2023, 37(2) :74-78.
[9] 許翔 . 風電光伏并網儲能容量的配置優化 [J]. 能源與 節能,2025(4) :4-6.
[10] 王劍波,陳會周,高運動 . 考慮新能源消納的電網儲能容量配置研究 [J]. 微型電腦應用,2025,41(3) : 105-109.
[11] 劉斌,羅異,孫周,等 . 基于用能自洽的高速服務區微網光儲組合優化配置 [J]. 綜合智慧能源,2025, 47(2) :50-59.
[12] 陳慧麗 . 多策略增強型蜣螂優化算法求解路徑規劃問題 [J]. 機械設計與制造,2025(5) :242-250.