基于GAN-DRNN的電力變壓器剩余壽命預測
李柯夫1,游欣2,徐椰烴3,錢泓江4
(1 成都雙流國際機場股份有限公司,四川 成都 610200; 2 國網(wǎng)四川省電力公司超高壓分公司,四川 成都 610095;
3 國網(wǎng)四川省電力公司彭州市供電分公司,四川 彭州 611930; 4 四川大學 空天科學與工程學院,四川 成都 610207)
摘 要 :大型變壓器的可靠性關(guān)乎電力系統(tǒng)的穩(wěn)定運行。由于時間、成本的局限性,致使變壓器剩余壽命統(tǒng)計數(shù)據(jù)規(guī)模較小,難以充分發(fā)揮機器學習算法的最佳預測性能。提出了一種基于生成對抗網(wǎng)絡(luò) (GAN) 的數(shù)據(jù)增強手段,有效解決變壓器剩余壽命樣本稀疏問題;構(gòu)建了具有良好預測性能的動態(tài)遞歸神經(jīng)網(wǎng)絡(luò) (DRNN) 模型,并驗證了其高效性。試驗結(jié)果表明,經(jīng)GAN作用的增強數(shù)據(jù)集能有效激發(fā)DRNN模型的預測性能,其預測精度最大提高了7.16%,預測結(jié)果均在 2.0 倍誤差分散帶以內(nèi),實現(xiàn)了小樣本 情形下變壓器剩余壽命的高精度預測,較大程度上壓縮了變壓器剩余壽命預測的時間和成本。
關(guān)鍵詞 : 變壓器 ;生成對抗網(wǎng)絡(luò) ;數(shù)據(jù)增強 ;動態(tài)遞歸神經(jīng)網(wǎng)絡(luò) ;剩余壽命預測
中圖分類號 :TM401 ;TM407 文獻標識碼 :B 文章編號 :1007-3175(2025)12-0036-06
Prediction of Remaining Life Power Transformers Based on GAN-DRNN
LI Ke-fu1 , YOU Xin2 , XU Ye-ting3 , QIAN Hong-jiang4
(1 Chengdu Shuangliu International Airport Co., Ltd, Chengdu 610200, China; 2 State Grid Sichuan Electric Power Company Extra-High Voltage Branch Company, Chengdu 610095, China;
3 State Grid Sichuan Electric Power Company Pengzhou Power Supply Branch Company, Pengzhou 611930, China;
4 School of Aerospace Science and Engineering, Sichuan University, Chengdu 610207, China)
Abstract: The reliability of large transformers is closely associated with the stable operation of the power system. Due to the limitations of time and cost, the scale of statistics on the remaining service life of transformers is relatively small, it is difficult to fully leverage the best predictive performance of machine learning algorithms. In order to solve the above problems, this paper proposes a data augmentation means based on generative adversarial network (GAN), which effectively solves the problem of sparse samples of the remaining life of transformers, constructs a dynamic recurrent neural network (DRNN) model with good prediction performance and its high efficiency is verified. The experimental results show that the enhanced dataset treated with GAN can effectively stimulate the prediction performance of the DRNN model. Its prediction accuracy has been increased by up to 7.16%, and the prediction results are all within the error dispersion band of 2.0 times. It has achieved high-precision prediction of the remaining life of transformers in the case of small samples, and has largely compressed the time and cost of predicting the remaining life of transformers.
Key words: transformer; generative adversarial network; data augmentation; dynamic recurrent neural network; prediction of remaining life
參考文獻
[1] SAYAKA Kamei, SHARAREH Taghipour.A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life[J].Reliability Engineering & System Safety, 2022,233 :109130.
[2] ABDUL W, MUHAMMAD Y, JOHN G B, et al.SelfAttention Transformer-Based Architecture forRemaining Useful Life Estimation of Complex Machines[J].Procedia Computer Science,2023, 217 :456-464.
[3] 栗然,劉會蘭,盧云,等 . 基于交叉熵理論的配電變壓器壽命組合預測方法 [J]. 電力系統(tǒng)保護與控制, 2014, 42(2) :97-103.
[4] 于長海 . 基于數(shù)據(jù)驅(qū)動的電力變壓器剩余使用壽命預測方法研究 [D]. 保定 :華北電力大學, 2018.
[5] 林喆,蘭生,張宇航 . 基于廣義回歸神經(jīng)網(wǎng)絡(luò)的油紙絕緣變壓器的壽命預測 [J]. 高壓電器,2015, 51(2) :125-130.
[6] RAHUL Soni, BHINAL Mehta.Diagnosis and prognosis of incipient faults and insulation status for asset management of power transformer using fuzzy logic controller & fuzzy clustering means[J].Electric Power Systems Research,2023, 220 :109256.
[7] AIZPURUA J I, STEWART B G, MCARTHUR S D J, et al.Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index[J]. Applied Soft Computing,2019,85 :105530.
[8] COSTA J G, LEITE A M, DA SILVA G A H, et al. Probabilistic evaluation of distribution power transformers reliability indices considering load transfers and mobile unit substations[J].Electric Power Systems Research, 2020, 187 :106501.
[9] NAIMUL I, RIAZ K, SAJAL K D, et al. Power transformer health condition evaluation: A deep generative model aided intelligent framework[J].Electric Power Systems Research, 2023, 218 :109201.
[10] 趙洪山, 常杰英, 曲岳晗, 等 . 基于二元非線性 Wiener 隨機過程的變壓器油紙絕緣剩余壽命預測方法 [J]. 電 工技術(shù)學報,2023,38(15) :4040-4049.
[11] BOKANG Agripa Tlhabologo, RAVI Samikannu, MODISA Mosalaosi.Experimental characterisation and life data analysis of superior mixed liquid dielectrics for power transformer application[J]. Scientific African, 2022, 18 :e01424.
[12] RAHUL Soni, BHINAL Mehta.Evaluation of power transformer health analysis by internal fault criticalities to prevent premature failure using statistical data analytics approach[J]. Engineering Failure Analysis, 2022, 136 :106213.
[13] 劉文澤,張俊,鄧焱 . 基于深度置信網(wǎng)絡(luò)和多維信息融合的變壓器故障診斷方法 [J]. 電力工程技術(shù), 2019,38(6) :16-23.
[14] VIMAL Angela Thiviyanathan, PIN Jern Ker, YANG Sing Leong, et al.Power transformer insulation system:A review on the reactions, fault detection, challenges and future prospects[J]. Alexandria Engineering Journal, 2022, 61(10) : 7697-7713.
[15] 林朝暉,張彼德 .利用糠醛含量進行變壓器壽命預測 [J]. 變壓器, 2009, 46(7) :35-38.
[16] 蔡紅飛 . 電力變壓器剩余技術(shù)壽命的綜合評估 [D]. 鄭 州 :鄭州大學,2012.
[17] ABBASI Ali Reza.Fault detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods[J]. Electric Power Systems Research, 2022, 209 : 107990.
[18] 李振柱, 謝志成, 熊衛(wèi)紅, 等 . 考慮絕緣剩余壽命的變壓器健康狀態(tài)評估方法 [J]. 電力自動化設(shè)備, 2016,36(8) :137-142.
[19] CHEN Qiyu, CUI Zhesi, LIU Gang, et al.Deep convolutional generative adversarial networks for modeling complex hydrological structures in Monte-Carlo simulation[J].Journal of Hydrology, 2022, 610 :127970.
[20] VASUDEVAN V, HUANG C, SIMIELE E, et al.Combining Monte Carlo with Deep Learning:Predicting High-Resolution, Low-Noise Dose Distributions Using a Generative Adversarial Network for Fast and Precise Monte Carlo Simulations[J]. International Journal of Radiation Oncology, Biology, Physics,2020,108(3) :S44-S45.
[21] OLIVEIRA F M F, DANIEL G, LIMOUSIN O.Artificial Gamma Ray Spectra Simulation Using Generative Adversarial Networks(GANs) and Supervised Generative Networks(SGNs)[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2023,1047 :167795.
[22] YANG Jiashu, CHEN Jianbing, JENSEN Hector. Structural design optimization under dynamicreliability constraints based on the probability density evolution method and highly-efficient sensitivity analysis[J].Probabilistic Engineering Mechanics,2022,68 :103205.
[23] 錢泓江,董秀成,張征宇,等 . 基于Elman的熒光油膜厚度近效測量 [J]. 航空動力學報,2023,38(3) : 558-568.
[24] SIMA Wenxia, ZHANG Han, YANG Ming, et al. Diagnosis of small-sample measured electromagnetic transients in power system using DRN-LSTM and data augmentation[J].International Journal of Electrical Power&Energy Systems, 2022, 137 :107820.